Получить географическую карту для Земли, вращение которой остановилось: различия между версиями

Материал из Common History development
Перейти к навигации Перейти к поиску
(Влияние внешних сил на геоид)
(Влияние внешних сил на геоид)
Строка 8: Строка 8:
 
Покажем зависимости между размерами "тазика" и [[Модель рельефа Земли (1) баланс сил|силами, действующими на него]].
 
Покажем зависимости между размерами "тазика" и [[Модель рельефа Земли (1) баланс сил|силами, действующими на него]].
  
Объем "тазика" равен произведению его площади на высоту. Площадь "тазика" постоянна, а расстояния от поверхности до литосферы и до центра Земли берутся из проекта [[wikipedia:Global Relief Model#Earth2014 (2015)]]. {{error|высоты в 1 метр на 3 квадратных километра поверхности|эмпирическими данными проекта Earth2014}}.
+
Объем "тазика" равен произведению его площади на высоту. Площадь "тазика" постоянна, а расстояния от поверхности до литосферы до центра Земли берутся из проекта [[wikipedia:Global Relief Model#Earth2014 (2015)]]. {{error|высоты в 1 метр на 3 квадратных километра поверхности|эмпирическими данными проекта Earth2014}}.
  
 
Поскольку современная форма [[геоид]]а проектом Earth2014 задаётся через расстояния к центру Земли, а в формуле [[file:Umgh.png]] ускорение g не всегда направлено в центр Земли, потому что g=g<sub>Earth</sub>+a (a - центробежное ускорение), то нужно разложить ускорение g на две составляющие: направленную в центр Земли, которую обозначим символом g<sub>ver</sub>, и перпендикулярную ей, которую обозначим символом g<sub>hor</sub>. g<sub>hor</sub> будет включать не только центробежное ускорение a<sub>hor</sub>, но и собственное ускорение "тазика".
 
Поскольку современная форма [[геоид]]а проектом Earth2014 задаётся через расстояния к центру Земли, а в формуле [[file:Umgh.png]] ускорение g не всегда направлено в центр Земли, потому что g=g<sub>Earth</sub>+a (a - центробежное ускорение), то нужно разложить ускорение g на две составляющие: направленную в центр Земли, которую обозначим символом g<sub>ver</sub>, и перпендикулярную ей, которую обозначим символом g<sub>hor</sub>. g<sub>hor</sub> будет включать не только центробежное ускорение a<sub>hor</sub>, но и собственное ускорение "тазика".

Версия 20:31, 2 декабря 2018

Сетка координат[править]

Метод конечных разностей требует разбиения гидросферы и литосферы на части. С помощью сетки HEALPix делим поверхность Землю на части одинаковой площади.

Пусть такие части гидросферы называются "тазиками" (по-английски "basin").

Влияние внешних сил на геоид[править]

Покажем зависимости между размерами "тазика" и силами, действующими на него.

Объем "тазика" равен произведению его площади на высоту. Площадь "тазика" постоянна, а расстояния от поверхности до литосферы до центра Земли берутся из проекта wikipedia:Global Relief Model#Earth2014 (2015). Погрешностью высоты в 1 метр на 3 квадратных километра поверхности эмпирическими данными проекта Earth2014, вызванной {{{чем}}}, пренебрегаю.

Поскольку современная форма геоида проектом Earth2014 задаётся через расстояния к центру Земли, а в формуле Файл:Umgh.png ускорение g не всегда направлено в центр Земли, потому что g=gEarth+a (a - центробежное ускорение), то нужно разложить ускорение g на две составляющие: направленную в центр Земли, которую обозначим символом gver, и перпендикулярную ей, которую обозначим символом ghor. ghor будет включать не только центробежное ускорение ahor, но и собственное ускорение "тазика".

Выбор точности сетки[править]

Динамика воды[править]

Если убрать из модели центробежное ускорение и подогнать гидросферу к форме нового геоида, то полученная карта будет неправильной, потому что расположение "тазиков" будет случайное.

Поэтому необходимо начинать с современной формы геоида и постепенно шаг за шагом уменьшать центробежное ускорение, балансирую гидросферу методом решёточных уравнений Больцмана.


При изменении формы геоида происходит перетекания воды из одного "тазика" в соседние.

Ограничения модели[править]

В данной задаче считаем, что ни гидросфера, ни другие факторы не разрушают литосферу. Погрешностью, вызванной {{{чем}}}, пренебрегаю.


Погрешностью в 30 м высоты игнорированием сжимаемости воды, вызванной {{{чем}}}, пренебрегаю.


Погрешностью, вызванной {{{чем}}}, пренебрегаю, поэтому закон сохранения энергии может нарушаться.


Погрешностью, вызванной {{{чем}}}, пренебрегаю. Законы сохранения импульса и момента импульса выполняются, если будет смоделировано время физических процессов и будут учтены трение и вязкость воды.

Соответственно из законов сохранения выполняется в полной мере только закон сохранения массы.