Peter U Clark

Материал из Common History development
Перейти к навигации Перейти к поиску

Publications (157)

"... по мере потепления мирового климата Западно-Антарктический ледяной щит растает", - приводит слова Кларка пресс-служба Орегонского университета. Сейчас масса ледового щита такова, что оказывает заметное гравитационное воздействие на воды окружающего океана, притягивая их к себе... Согласно исследованию таяние массивного ледяного щита вызовет подъем придавленного им грунта, а земная ось вращения сместится примерно на полкилометра, что так же повлияет на уровень моря в различных регионах земли.

оригинал - The Sea-Level Fingerprint of West Antarctic Collapse

Jerry X. Mitrovica, Natalya Gomez, Peter U. Clark
the collapse of the WAIS leads to a displacement of the south rotation pole of ~100 m × EEV toward the West Antarctic; this shift drives a sea-level rise in North America and the Indian Ocean and a fall over South America and

Asia relative to the EEV

Sea level change due to Antarctic collapse[править]

2010, Natalya Gomez, Jerry X. Mitrovica, Mark E. Tamisiea, Peter U. Clark

p. 625[править]

The sea level theory adopted by Clark & Lingle (1977) was a special (elastic) case of a theory that was developed to model sea level changes associated with the Late Pleistocene ice-age cycles (Farrell & Clark 1976). However, over the last decade this “standard” theory has been extended to include rotational feedback (e.g. Milne & Mitrovica 1996, 1998; Peltier 1998; Mitrovica et al. 2005) and shoreline migration due to local changes in sea level at coastlines and/or the growth or ablation of grounded marine-based ice (e.g. Johnston 1993; Milne 1998; Milne et al. 1999; Mitrovica & Milne 2003; Mitrovica 2003; Kendall et al. 2005).

p. 630[править]

The physics of rotational feedback is outlined in Fig. 6 and the associated caption... In our calculations, the collapse of the WAIS leads to a shift in the rotation pole of 92 m per metre of effective eustatic sea level rise (or ∼0.46 km for an EEV of 5 m)... the centre of mass of the West Antarctic is ∼10◦ from the south pole, and this displacement is clearly sufficient to drive a significant reorientation of the pole

p. 631, Fig. 6[править]

From t0 to tj the rotation pole... assumed to have moved ... relative to the solid surface of the planet. (C) shows the difference in centrifugal potential between the two frames (B minus A) associated with the true polar wander

The sea-level fingerprints of ice-sheet collapse[править]

2014, Carling Hay, Jerry X. Mitrovica, Natalya Gomez, Jessica Creveling

p. 62[править]

Second, and more subtle, an off-axis ice-sheet collapse will perturb the orientation of the Earth's rotation axis (i.e., drive true polar wander, TPW) and the associated perturbation to the centrifugal potential will produce a sea-level signal (Milne and Mitrovica, 1996). In particular, the local rotation axis will reorient toward the zone of ice-sheet collapse (i.e., the South Pole will move toward the WAIS in Fig. 2A and toward the EAIS in Fig. 2C, while the North Pole will move toward the GIS in Fig. 2B), and this will lead to a spherical harmonic degree-two, order-one "quadrential" sealevel perturbation (Milne and Mitrovica, 1996;Gomez et al., 2010). The effect of this quadrential perturbation is significant.

A fully coupled 3-D ice-sheet–sea-level model:algorithm and applications[править]

B. de Boer1,2,*, P. Stocchi3, and R. S. W. van de Wal

due to the rotation of the Earth around its axis, any surface mass displacement together with the solid Earth and geoidal deformations triggers a perturbation of the polar motion that in turn affects the redistributionof melt water in the oceans and ,hence, the mean sea surface height (Milne and Mitrovica, 1996; Kendall et al., 2005)

p. 2150[править]

4.4 Rotational feedback

An important aspect of the gravitationally self-consistent solution of the SLE is the rotational feedback, which is a new feature in SELEN. The changes in the mass distribution of ice and water induce a shift in the position of the rotational axis (polar wander) that has an ellipsoidal form (e.g. Gomez et al., 2010b). The difference as shown in Fig. 9bis described by the spherical harmonics of degree 2